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1. INTRODUCTION

Boundary value problems in applied ice mechanics involving
multiaxial states of stress and complex loading histories, such
as those encountered during ice-structure interaction, are
increasingly being solved using numerical models including the
finite element method (Jordaan, 1986). Constitutive models are
required to characterize the ice deformation by viscoelastic flow
in numerical simulations. ' »

In problems where only "steady state" flow is of interest,
an elastic - power law creep model of ice (sometimes without the
elastic component) is adequate. The most widely used model of
steady state or viscous flow of polycrystalline ice is Glen's
power law. The multiaxial generalization of the differential
model follows from conventional elasticity theory and from the
rate theory of flow. The latter is based on normality of the
viscous deformation-rate to a scalar valued flow potential
expressed in terms of an equivalent stress measure. Palmer (1967)
has derived the multiaxial law for incompressible flow of
isotropic ice, while Shyam Sunder, Ganguly and Ting (1987) have
presented an orthotropic model of incompressible flow.

Both the elastic and "transient" flow behavior of ice,
hoWeve;, are of great importance in a broad range of ice
mechanics problems (Gold, 1977, Sinha et al., 1987). The most
widely used flow law for ice under uniaxial loading is the creep
compliance function proposed by Sinha (1978, 1979). This
formulaticn postulates that grain boundary sliding governs
transient deformation, and that the compliance function is
linearly dependent on stress and nonlinearly dependent on time.
For conditicns other than constant stress creep, monotonically
increasing stress in particular, Sinha (1983) has applied the

nonlinear compliance function in conjunction with a convolution
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integral to predict the mechanical behavior. This integral
formulation assumes a particular generalization of Boltzmann’s
superposition principle for transient deformations.

Le Gac and Duval (1980) have proposed multiaxial
constitutive relations for the inelastic deformation of
polycrystalline ice which account for the phenomena of isotropic
and kinematic hardening. Considering deformation mechanisms in
ice, Ashby and Duval (1985) have subsequently developed a
kinematic hardening model based on a two-bar truss analogy. They
have used the model to identify certain dimensionless variables
from which a single master curve can be developed for the creep
of polycrystalline ice. The appropriateness of the variables has
been demonstrated using the comprehensive experimental data of
Jacka (1984) for dense isotropic polycrystals with a mean grain
size of 1.7 mm. The predictive capability of their model,
however, has not been explicitly tested against this data set.

This paper presents a differential flow model for the
deformation of polycrystalline ice which (i) accounts for both
isotropic and kinematic hardening, and (ii) satisfies the
dimensional requirements identified by Ashby and Duval (1985).
Flow (or creep) is modeled in terms of two nonlinear »
deformation-rate mechanisms: the first mechanism governs thé
transient deformation-rate (creep) which decays to zero as both
an elastic back stress and a drag stress measure increase
asymptotically; the second mechanism, which is modeled in terms
of the well-known power law, governs the viscous deformation-
rate. The evolution of the back or rest stress cont;ibutes to
kinematic hardening, while that of the drag stress contributes to
isotropic hardening.

In general, numerical integration of the governing eguations
is necessary for predicting the model response under arbitrary
loading histories since both isotropic and kinematic hardening
are history dependent phenomsna. However, closed form analytical
solutions are available for the creep compliance function and the
recovery response if only kinematic hardening is considered. When

both types of hardening are included, the differential model



follows creep data on ice quite well, specifically those of Jacka
(1984). Predictions of the ratio of transient (delayed elastic)
strain to total strain agree qualitatively with Sinha’s (1979)
model if grain size effects are taken into account.

The multiaxial generalization of the differential model
follows from conventional elasticity theory and from the rate
theory of flow. This eliminates the need for an integral
formulation under variable loading histories or multiaxial
loading and for generalizing the superposition assumption for
nonlinearly viscoelastic materials. Equations are derived for an
orthotropic model of incompressible flow and for estimating model

parameters from uniaxial experimental data.

2. UNIAXIAL DIFFERENTIAL MODEL
Physical Basis of Deformation Model.-- There is general

agreement, based on theoretical and experimental work, that at
least two thermally activated deformation systems, a soft system
and a hard system, are present during the flow of fresh-water
polycrystalline ice (Sinha, 1979, Ashby and Duval, 1985.) They
may be either grain boundary sliding (with diffusional
accommodation) and basal slip or basal slip and slip on a
non-basal plane. A combination of these processes could be
present as well.

Initially, the solid resists the applied stresses in an
elastic manner and then flow begins on the soft and hard systems.
However, flow, particularly on the easy soft system, causes the
build-up of internal elastic stresses. This may occur as a result
of grain boundary sliding next to grains poorly aligned for
deformation or dislocation pile-ups at the boundaries of such
grains. Dislocation pile-ups at grain boundaries have been
observed in ice through scanning electron microscopy (Sinha,
1987.) The internal elastic stresses, termed back or rest

stresses, resist flow. In addition, internal drag stresses which

resist dislocation fluxes are generated in annealed materials
undergoing flow. The increase in drag stresses are the outcome of

creep resistant substructures, i.e., subgrains and cells, formed



by grain boundary sliding or dislocation movement and of
dilocation entanglement, dipole formation and kink band formation
during slip (particularly on the basal plane.)

A detailed understanding of evolving structural and stress
states on the deformation of polycrystalline materials is
unavailable at the present time. For example, only recently has
an attempt been made to model the primary creep process resulting
from sub-cell formation using sub-cell size and misorientation as
state variables (Derby and Ashby, 1987.) However, it is well
known that an increasing drag stress contributes to isotropic
hardening, while an increasing rest stress contributes to
kinematic hardening. In isotropic hardening, material properties
are independent of the direction of straining. On the other hand,
kinematic hardening induces directionally dependent material
properties, referred to as deformation or stress-induced
anisotropy. The Baushinger effect in metals is an example of
kinematic hardening. '

In this paper, the deformations resulting from the
interactions between the soft and hard systems are decomposed
into two components; a transient flow component and a steady flow
component. Steady state flow, representing a balance betwéen~
work-hardening and recovery, is associated with viscous
(irrecoverable) strains. Isotropic and kinematic hardening
phenomena are active during transient flow and give rise to
elastic strains. These strains are recoverable on unloading since
equilibrium requires the internal elastic back stress to reduce
to zero. The time-dependent elastic strains defining transient
deformation represent the phenomenon of delayed elasticity or
anelasticity.

Mathematical Formulation.-- The governing equation for the

model under uniaxial conditions is obtained by expressing the

total strain rate as a sum of its components, i.e.:

where the three terms on the right hand side, representing



instantaneous elasticity, transient flow and steady state or
viscous flow are described in what follows.

The instantaneous elastic strain, €or is related to the
stress, o, through the Young’s modulus, E, of polycrystalline

ice; this relationship may be expressed in rate form as:

€, = o/E (2)
Several investigators (see, e.g., Gold, 1977) have shown using
high-frequency sonic methods that the Young’s modulus of
polycrystalline fresh-water ice varies in the range of 9-11 GPa,
with negligible temperature dependence between -5°C and -45°C.

The viscous strain, €, which is associated with secondary
creep or steady flow conditions, follows the well known Norton
type power law of Glen (1955), i.e;,

e 1/N

c =V
v

(3)
where N is the power law index and V is a temperature dependent

constant characterized by an Arrhenius activation energy law:
Vo= VO exp(Q/NRT) (4)

T is the temperature in Kelvin, Vo is a temperature independent
constant, Q is the activation energy, and R is the universal gas
constant equal to 8.32 J mol_l K_l. The activation energy for
steady flow of columnar-grained polycrystalline ice has been
experimentally determined by Gold (1973) to be 65 KJ mol"l for
temperatures in the range of -5°C to -40°C. While the activation
energy for pure single crystals does not change with temperature
up to -0.2°C, Gold (1983) suggests that Q varies at the higher
temperatures for polycrystalline ice and that at temperztures
greater than -5°C it is probabiy closer to 100 KJ mol‘l. Similar
trends have been observed by Barnes et al. (1971.)

The transient strain rate et is taken to follow a Norton



type power law driven by a reduced stress measure, o

N

. N {c - R}
e, = (e /V)" = (5)
t , r Bv

where the variable R represents the back stress and B is a
non-dimensional drag stress. Implicit in the formulation of Eq.
(5) are the assumptions that: (i) the exponent N is the same as
that for steady flow in Eqg. (2), and (ii) the temperature
dependence of the transient deformation-rate, represented by the
parameter V, is given by an Arrhenius law with an activation
energy equal to that for steady flow. For columnar-grained
polycrystalline (fresh-water) ice the former assumption can be
deduced from the numerical values for parameters in Sinha’s
(1978) time-hardening model, and for dense isotropic polycrystals
from the strain-hardening model of Ashby and Duval (1985). Sinha
(1978) has also shown that the activation energy for
transient flow is equal to 67 KJ mol_l, which agrees well with
Gold’s (1973) data for steady flow in the same type of ice.
Evolution equations must be specified for R and B which are
history-dependent variables representing transient flow. Since
the transient strains are elastic in nature, the time rates of
change of the back and drag stresses are linecrly proportional to
the transient strain rate. The following equations are>postulated

to descibe the evolution of R and B:

AE ¢

R ¢ (6)

oo
|

(7)

dlstlJ

=" |é | sgn{
t at

The initial value of R is zero for an annealed material or for a

material that has reccvered from prior loading. On the other hand
the initial value of B, i.e., B, may represent the annealed
state of the material or some level of initial hardening
introduced by pre-straining. Both A and H are temperature
independent and dimensionless variables.

Under créep loading R will asymptotically increase to a



value equal to the applied stress, at which point transient flow
will cease. In the case of constant strain rate loading, R
approaches the steady state stress asymptotically. The maximum
value of transient strain in both these cases is given by
st,max=°/AE when R is zero initially. A value of A less than one
suggests that this magnitude is greater than the instantaneous
elastic strain. For the same loading conditions, the drag stress

reaches a maximum value equal to BO+Ha This constraint on

the maximum value of B states that thetiggtropic resistance to
transient flow is not unbounded; if it is unbounded and
approaches infinity, the material will lose its ability to
undergo further flow.

Under reversed or cyclic loading R will reverse or switch
back and forth between positive and negative values, i.e., the
physical proceéses associated with kinematic hardening can
locally relax or move back and forth, thus preventing a continual
build-up which would 1lead to considerable hardening. The signum
function is used in Eg. (7) to ensure that B has the same effect
on material behavior under both compressive and tensile loadings.
For instance, it can be inferred from Egqg. (7) that é > 0 during
both tensile and compressive creep tests, while it is negétive
during unloading in both types of tests. The decrease in draé
stress during unloading indicates a decreasing resistance to
grain boundary sliding and dislocation fluxes. This may arise
from a spatial bias in the distribution of defects generated by
isotropic hardening which favors regions of high back stress
concentration.

Equations (1)-(7) define the governing differential

equations for the uniaxial model. For creep loading, the

soluticons of Egs. (1)-(4) are t;ivial.wHowever,‘Eqs.n(S)f(jjma;e\‘“

coupled and numerical integration is necessary to compute the
transient strains if both isotropic and kinematic hardening are
present. If isotropic hardening is absent, i.e., B is a constant,
analytical solutions can be obtained as shown in a subsequent
section. For a general or variable loading history, the governing

equations are all coupled and numerical integration is reguired.



Model Formulation in Dimensionless Variables.-- For the

special cases of constant stress and constant strain rate
loading, Ashby and Duval (1985) have suggested that unique
relationships exist between certain dimensionless variables. Such
relationships are predicted by the proposed model as shown below.
For creep of polycrystalline ice at constant applied stress,
Ashby and Duval (1985) have considered the following
dimensionless variables for strain, strain rate, time, and the

back stress:

¢ = ¢E/c (8)
t = 2/t (9)
t = té¢,E/o : (10)
R = R/o - (11)

Substituting Egs. (8)-(11) in Egs. (2), (3) and (5) yields:

€, = 1 (12)

5, = € (13)
and

g, =1 (14)

R + Bétl/N =1 (15)

In order that Eq. (7) also reduces to a dimensionless form, the
hardening parameter H is defined as HE/¢. The dimensionless

evolution equations can then be expressed as:

~

o

= At - ,4“,(16)
Q% = H |ét| sgn {gl§%il (17)
dt : d &t |

In the above equations the differentiation is with respect to
dimensionless time. Equations (12)-(17) show that the model

predicts a unique relationship between the dimensionless



variables and is independent of applied stress level and
temperature.

Under constant strain rate loading the model predicts that a
unique relationship exists between dimensionless stress ¢ and
dimensionless time t, independent of the applied strain rate éa
and temperature. Consider the following dimensionless variables
for stresses, time, and strains, as suggested by Ashby and Duval
(1985):

~ c R
c = H R = (18)
“min “min
~ té_E
a
t = (19)
g min
€ E e E € E
~ e ~ v ~ t
€s = ; €, = ; €, = (20)
g [+ g
where “min is the stress corresponding to the minimum creep rate

given by Glen’s power law, Eg. (3):

c.=V€l/N

min a (21)
Substituting Egs. (18)-(20) in Eqs. (2), (3), (5)=(7) yields:

. [e3 -~

ee = — (1 - se) (22)
(o)

Eo= ¥ - & e (23)
o2
, [ - & N

e, =L . (24)
o B a

=23 (3 2, ) (25)
at
. als, |

SN EICE N sgn[ Nt} (26)

dt at d t
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where & indicates do/dt, and similarly for ¢, &,, £, and R.

v t’
Upon substituting Eqgs.(22)-(24) in Eq. (1) expressed in

dimensionless form, the following equation is obtained:

~ . ~ S N

. g - R

c=1-—|:oN+[————-——-—-:l:l (27)
B

Egs. (24)-(27) can be integrated with the initial conditions of
zero dimensionless stress and transient strain. As steady state
is reached, i.e., the dimensionless stress rate and transient
strain rate decay to zero, the above equations show that the
dimensionless stress and transient strain tend to one and 1/A,
respectively. The stress at steady state will therefore attain

the value of ¢ given by Eg. (21). A single master curve can be

used to relatemtge-dimensionless stress and time since the
temperature dependent constant V and the applied strain rate have
been eliminated from the equations. Experimental data is
currently unavailable for verifying the dimensionless
relationships under constant strain rate loading.

Closed-Form Analytical Solutions for Creep and Recovery

Response.-- As previously stated, closed form analytical
solutions exist for creep and recovery response when isotropic
hardening is absent, i.e., B is a constant. These solutions are
valuable since they provide insights regarding the behavior of
the model. The analytical solutions are derived below.

In an ideal creep test the stress, o, is applied
instantaneously and the stress rate history is a Dirac delta
function, &(t), with amplitude . This history is zero for all t

except at t=0 where it is infinity such that:

t*
J o 8(t) = o ' (28)

for t > 0 and zero otherwise. Consequently, the initial strain

rate predicted by the model is also a Dirac delta function, i.e.,
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it is equal to infinity. The amplitude of this function is o/E,
which when integrated in a manner similar to Eq. (28) corresponds
to the instantaneous elastic strain. For time incrementally
greater than zero, the strain rate is finite and equals:

"+

et = (o/BV)N

+ (o) (29)
Equation (29) recognizes that the elastic back stress in Eq. (5)
is equal to zero initially. Since the first term of the equation
which represents transient flow dominates the initial creep
responsé, the constant B will generally be less than one.

The dimensionless creep compliance function for the model,
J, is the sum of the dimensionless elastic, transient and viscous
strains, respectively, i.e.

~

+ e ‘ | (30)

= + €
J 8e t v

The dimensionless elastic and viscous strains are given in Egs.
(12) and (13). The dimensionless transient strain can be
analytically derived from Egs. (15) and (16) with a substitution
of variables approach. In particular, define a variable qvas‘

follows:

1 - A ¢

Q
I
t
w
[

Then,

~
L3

g = -A £ (32)
Substitution of Egs. (31) and (32) into Eg. (15) and a separation

of variables yields:
— = dt (33)
qN BN |

Integrating Eqg. (33), applying the initial condition of Et = 0,

i.e., g = 1, and substituting for g results in:
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~

1 (1-N)

e, = 18 = [ ANt 4 AN BN(no1) Y/

t (34)

Equation (30) together with Egs. (12), (13) and (34) provide a
closed form analytical solution for the dimensionless creep
compliance function. Also, by substituting Eq. (34) in Eq. (15),
the dimensionless transient strain rate can be expressed in terms
of dimensionless time as:

ét = [B

Equations (34) and (35) show that the dimensionless transient

N-1 N/(1-N)

+ A/B(N-1)t] (35)

strain and strain rate tend to 1,/A and l/BN as dimensionless time
tendé to infinity and zero, respectively. o

If creep recovery is allowed to occur at time t=t , the
elastic component of the strain is recovered instantaneously
while the viscous component is irrecoverable and remains
unchanged with time. However, the transient strain will decay
with time according to the following closed form analytical
solution that can be derived from Egs. (15) and (16) in a manner
similar to Eg. (34):

1-N

+ (A/B) 1/(1-N)

N
g = legy (

N—l)(t—tu)] (36)

where ¢ is the dimensionless transient strain at the time of

tu
unloading. Equation (36) shows that the dimensionless transient

strain decays to zero with dimensionless time after unloading.

3. EXPERIMENTAL VALIDATION OF UNIAXIAL MODEL
This secticn first identifies the uniazxial model parameters
and discusses methods for determining them. Then, model
.predictions under constant stress loading are verified against
| ha (1978). The model

is also compared with Sinha’s (1979) predictions for the relative

the experimental data of Jacka (1984) and Si

3

contribution of transient strain to the tctal strain during
creep. To further demonstrate the capability of the model, the

predicted strain response under a monotonically increasing stress
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history is verified against Sinha’s (1981) test data. Finally,
the creep and recovery response of randomly oriented snow ice is
studied using Brill and Camp’s data taken from Sinha (1979).

Parameter Identification and Estimation.-- The uniaxial

model contains a total of six parameters: E, N, Vo’ A, H and Bo‘
For single ice crystals and transversely isotropic ice, five
independent elastic moduli are needed to describe elastic
behavior. Values for these elastic moduli are available for
single crystals (see for example, Green and Mackinnon, 1956). The
value of E for polycrystalline isotropic ice can be estimated
fairly well from the elastic moduli of single crystals (Gammon et
al., 1983). Typical values of E for isotropic polycrystalline ice
are given in Section 2 of this paper.

Based on the results of tests by a number of researchers
carried out at -10°C in the stress range 0.1 to 2 MPa, Ashby and
Duval (1985) have estimated the value of N to be three for the
creep of isotropic polycrystals and two for the basal glide of
monocrystals. The use of N=3 for isotropic polycrystalline ice at
moderate stresses is supported by theoretical models which assume
dislocation mobility as the rate-controlling process (Baker,
1982). sinha (1978) has also suggested the same value for‘thg
stress exponent in his equation for the viscous creep of
polycrystalline ice.

The temperature independent constant Vs and the activation
energy Q can be estimated from creep data for various
temperatures. From the values of the parameters used in Sinha’s
equation (1978, 1979), V_ is estinated to be 6.59 x 107° mpa s+/V
for Q=67 KJ mol T, B

Under constant stress loadirng, the parameters A and B,
determine the maximum value of the,transient strain (o/KE) and
the initial transient strain fate (c/BOV)N, respectively. The
constant A can be estimated by subtracting the elastic strain and
the viscous strain from the total strain when steady state is
reached. Since the total recoverzble deformation is o¢/E+o/AE, the
fully relaxed modulus, equal to the applied stress per unit

maximum recoverable deformation, is given by EA/(1+A). This
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allows A to be computed from a creep recovery test as well. The
constant BO can be estimated from Eg. (29). This requires
knowledge of the initial strain rate and the constant V. The
latter can be computed from Eq. (4), but initial strain rates
derived from the measured initial strains may be somewhat
inaccurate since experimental measurements of small strains tend
to be unreliable (Jacka, 1984, Mellor and Cole, 1982). The
parameter H controls the amount of isotropic hardening at a given
time. It can be estimated from creep strain and strain rate data
using Eq. (5). Having determined V, the viscous strain and strain
rate histories are known, and the transient strains and strain
rates can then be extracted from the creep data. Noting Egs. (6)
and (7), Eq. (5) can be written in the following way:

£ ¢ M t5e
The quantity on the left-hand side plotted against the second

Inlo - AEe AN (37)

- BOVé = ln H + 1n [Ve
term on the right-hand side of Eqg. (37) is a straight line and H
can be computed from its intercept with the y-axis.

Comparisons of the model predictions with experimental data
in this paper is based on the following values for N, E, Vo and

Q:

3

9500 MPa
6.59%x10"
67 kJ mol

3_§Pa st/N

Wl

N
E
Vo
Q

Comparison of Model Predictions with Jacka’s Creep Data.--

Jacka (1984) has published results of uniaxial compression tests
on isotropic polycrystalline ice with a mean grain size of
1.7+40.2 mm. The samples were tested under constant stress ranging
from 0.1 to 1.5 MPa at the following specific temperatures: -5.0,
-10.6, —17.8‘aﬁd -32.5°C. Figs. 1, 2 and 3 show plots for

Jacka's data (taken from Ashby and buval, 1985) corresponding to
€ versus t, & versus £, and § versus &, respectively. The
predictions of the model, obtained by sclving Egs. ElS)—(l7) are

indicated by solid lines with A=0.017, BO=O.24 and H= 0.024.

Also shown are the model predictions for no isotropic hardening,
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i.e., solutions provided by Egs. (12)-(14) and Egs. (34)-(35).
Parameters used for generating these curves are A=0.033 and
B=0.402. Note that for experimental data plotted in dimensionless
form, the model predictions using Egs. (12)-(17) as well as Egs.
(34)~(35) are independent of E, Vo and Q. Ashby and Duval (1985)
have modified Sinha’s equation for creep to a form which
satisfies the dimensional requirements. The predictions of the
modified equation are also shown in the figures. In referring to
Jacka’s data it is understood that all variables are normalized
and the word dimensionless is dropped when referring to them.

The solid lines show that agreement between model
predictions and data is good when strain rate is plotted against
time or strain (Figs. 1l and 2). The predicted master curve in the
strain versus time plot (Fig. 3) represents the data well, but
at small times the predicted strains somewhat overestimate the
experimental data. With no isotropic hardening, the strain rates
are underestimated while the strains agree well with data. On the
other hand, the modified equation provides a good prediction of
the strain rate versus time response (Fig. 1), but it over-
predicts the initial strains (Figs. 2 and 3) in spite of a factor
of two reduction in the value of the parameter (parameter~A in
Ashby and Duval's paper) which equals the maximum transient
strain.

Comparison of Model Predictions with Sinha’s Creep Data.--

Sinha (1978) has conducted tests on the creep behavior of
transversely isotropic columnar-grained ice (S-2 ice) with an
a&erage grain‘diameter of 3 mm. The tests were conducted in the
temperature range of -9.9 to -41°C under a uniaxial compressive
load of 0.49 MPa acting in the plane of transverse isotropy.
Based on the observations that the activation energy for both
viscous flow and transient deformation appears to be equal and
that Young's modulus is relatively independent of temperature,
Sinha (1978) postulated that the time dependence of the strain at
one temperature can be obtained by s ting the measured
dependence at another temperature al the time scale using a
s

shift function. Figure 4 shows the cr trains obtained at
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various temperatures shifted to a reference temperature of -10°C,
The solid line indicates the model prediction with A=0.33,
B,=0.058 and H=0.63. The value of A is identical to that obtained
by Sinha (1978).

The agreement between the experimental data and theoretical
results is very good. Notice alsoc that the values of A, ; and B,
used for Sinha’s and Jacka’s data are different, reflecting
differences in the ice types that were tested, i.e., isotropic
and granular versus transversely-isotropic and columnar-grained,
and the average diameters of ice grains. Such modifications to
parameter values are also needed for Sinha’s equation. For
example, the parameter corresponding to A was determined to be
1/3 from Sinha’s tests on ice with a grain size of 3 mm, but
values of 1/70 and 1/35% were found to be suitable for Jacka’s
data (Ashby and Duval, 1985).

Model Prediction of Ratio of Transient to Total Strain.--

The parameter AE can be interpreted as an anelastic modulus (not
to be confused with relaxed modulus), while BV represents the
resistance to transient flow. If transient deformation is related
to grain size as postulated by Sinha (1979), then the parameters
A and H will depend on grain size. Sinha's (1979) model cénsiders
both transient strain and strain rate to be inversely
proportional to grain size. For consistency with this
formulation, it is necessary for the model parameters to be

related to the grain size d as follows:

A = 4d/A’ (38)
= r g 1/N)
B,= B,'d (39)
B o= nr gl?/N (£0)
where A', BO’ and H’ are grain size indépendent material

parameters. The values of these latter parameters are calculated
from Egs. (38)-(40) respectively. For the previously determined
values of A, B_ and §~(viz., 0.33, 0.058 and 0.63) A’=9 mn,

B,’=0.04 1N, and B =0.3 mm”

The analytical solutions for the case of no isotropic
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hardening are useful for inferring some of the characteristics of
the complete model. It is apparent from Egs. (14) and (35) that
the ratio of the (dimensionless) transient strain rate to the
viscous strain rate decreases with increase in grain size. The
ratio also decreases with dimensionless time (Eg. 35). According
to the definitions of dimensionless time (Egq. (10)) and viscous
strain rate (Eg. (3)), the ratio must also decrease with increase
in applied stress. These trends are in agreement with predictions
of Sinha’s equation.

The predictions of the proposed model and Sinha’s equation
with regard to the relative contribution of transient strain to
total strain are compared below. Let the ratio of the transient
strain to the total strain, y, be defined as follows:
£

£ . & | (41)

™M1l

~

+ t + 1

mzl

€t
where the dimensionless variables’ have been defined previously.
By solving Egs. (15)-(17) the strain dependence of y under a
constant stress load of 1 MPa at -10°C for various grain sizes is
predicted as shown in Fig. 5. The important features predicted by
Sinha’s equation such as the increasing value of y with \
decreasing d, the occurrence of maximum y at small strains, the
gradual shift of the maxima towards larger strains with
decreasing d, the gradual decrease in y with increase in strain
after the péak is passed, and the decreasing effect of d on y at
large strains are also observed in Fig. 5, although the numerical
values are different.

Furthermore, since the relationship betwesen the
dimensionless transient strain and“timglis‘independent of
temperature (Eq. (34)), it can be deduced from Eg. (41) that the
evolution of y with dimensionless strain for a given grain size
is unique, i.e., independent of both temperature and stress
level. Recalling that dimensionless strain is equal to £E/¢ and
if E does not change appreciably with temperature, then for a

given grain size, the evolution of y with strain (stress) itself



18

is independent of temperature but not of stress (strain). This is
also predicted by Sinha's equation.

Prediction cf Model Response Under Monotonically Increasing

Stress.-—~ The rate sensitivity of the compressive strength of
columnar—-grained ice under constant cross-head displacement rates
has been investigated by Sinha (1981). It was shown that the
results are representative of the constant stress rate rather
than the constant strain rate condition. A numerical integration
method, based on a generalized creep equation and the principle
of superposition, was developed by Sinha (1983) to predict the
evolution of strain corresponding to a given stress history.

For the proposed model, the strain response can be obtained
by numerically integrating Egs. (1)-(7). In this example, the
actual stress-time history (not the constant stress rate
idealization) is taken as input and is known from Sinha’s (1981)
tests on ice with an average grain size of 4.5 mm. The tests were
carried outiat -10°C under a constant cross-head displacement
rate of 1.25x10_3 cm/s. The values of the hardening parameters
are determined from Egs. (38)-(40) for the given grain size and
previously determined values of the grain size independent
parameters. |

The stress-time data is presented in the upper curve of Fig.
6b, while the lower curve shows the predicted strain-time
response superimposed on the test data. The agreement between
theory and experiment is quite good, given that the parameter
values which were determined from a different data set are
unchangéd. Figure 6a shows that when stress is plotted against
strain, a very good representaticon of the data is obtained. It is
possible to conclude from this figure that the predictions of the
proposed model under monotonically increasing stress compare well

with experimental data.

Comparison of Mcodel Predictions with the Creep and Recovery
a

Data of Brill and Camp.-- Figure (7) shows creep and recovery

data for tests conducted on randomly oriented snow ice by Brill
and Camp (reproduced in Sinha, 1979.) The three sets of data

9
refer to tests carried out under the following cenditions: curve
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(a) at -5°C and 0.232 MPa, curve (b) at -5°C and 0.125 MPa, and

curve (c) at -10°C and 0.238 MPa. The model predictions, shown in

-1/N

solid lines, are generated with A’=6.5 mm, B,'=0.11 mm and

fr=0.01 mm 2/N,

are 2 mm, 2.3 mm, and 1.5 mm respectively, which are almost

The grain sizes used for curves (a), (b) and (c)

identical to the values determined by Sinha (1979). Differences
in the hardening parameters reflect the difference in ice types,
i.e., transversely isotropic and columnar-grained versus
isotropic and granular snow ice. The agreement between model
predictions and test data is quite good, given that the
measurement of strain recovery in ice shows large scatter (Sinha,
1982.)

A major difference exists between Sinha's recovery model and
the present formulation. The former can result in a decrease of
the permanent/irrecoverable viscous strain and eventually lead to
reversed strain {(e.g., an elongation or tensile strain due to
recovery from compressive creep). This is due to the particular
form of the superposition principle adopted, in which the elastic
and the transient strains resulting from the stress drop are A
subtracted from the total strain at unloading. Recovery is thus
the mirror image of the transient term in the eqguation for
loading and as time increases it can exceed the trancient creep
strain at the instant of unloading. In order to overcome the
problem, the superposition principle is not used when the
predicted strain during recovery becomes less than the
accumulated viscous strain and the strain is kept fixed
thereafter at a value equal to that of the viscous strain at
unloading. The proposed theory dees not suffer from this modeling
limitation since the values of R and B decrease during unloading,

reflecting creep recovery.

4. MULTIAXIAL MODEL FORMULATION

Natural ice has very complex crystalline and stratigraphic
structures, and generally cannot be considered as an isotropic
material. -For example, columnar fresh-water ice may have two

sources of anisotropy: (a) the c-axis may be oriented
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perpendicular to the axis of crystal growth, and (b) the c-axes
of different crystals may show preferred orientation in the plane
on which they lie. According to the classification of Michel and
Ramseier (1971), the first source of anisotropy is exhibited by
S2 ice while both types of anisotropy are present in S3 ice.

The anisotropy of ice strongly influences its mechanical
behavior. Carter and Michel (1971) have tested S2 ice at -10°C
under constant strain rate loading conditions. They find that the
first source of anisotropy leads to a vertical to horizontal
maximum stress or strength ratio of about two. Information on the
effect of the second source of anisotropy on the strength ratio
of freshwater ice is currently unavailable, although data for sea
ice indicates the following strength ratios: (a) 0.25-0.60 for
strength at a 45 degree azimuthal angle to that along the c-axes,
and (b) 0.50-0.95 for strength at a 90 degree angle to that along
the c-axis (Peyton, 1968; Vittoratos, 1979; wWang, 1979;
Richter-Menge et al., 1985). ‘

Theoretical formulations which account for anisotropy in ice
with a transversely isotropic model have been developed by
Reinicke and Ralston (1977) and by Vivatrat and Chen (1985). The
former model is based on plasticity theory and considers ice to
be a pressure sensitive material as well. The latter is a \
pressure insensitive, elastic - power law creep formulation.

The development presented here is based on an orthotropic
generalization (i.e., the general case of a material having three
orthogonal planes of symmetry) of the proposed uniaxial model
which acccunts for both transient and steady state flow in ice.
The transversely isotropic and isotropic formulations are special
cases of the orthotropic generalization.

Conceptual Framework and Constraint Conditions.-- The

three-dimensional generalization of the model follows naturally
from the uniaxial formulation, i.s., it is based on strain
decomposition, linear elasticity and the rate theory of flow.
Constitutive relations are derived for =ach mechanism of

deformation in the model, resulting in the orthotropic équivalent
of Egs. (1)-(7).
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To model orthotropic elasticity, the classical formulation
from elasticity theory is adopted (see, for example, the book by
Lekhnitskii, 1963). Compressibility of ice deformation is
implicitly contained in linear elasticity where the Poisson’s
ratios are less than 0.5, while the transient and viscous
deformation-rate mechanisms are assumed to be incompressible
(Palmer, 1967, Sinha, 1987). The orthotropic generalization of
the viscous deformation-rate mechanism is derived from the rate
theory of flow by applying the normality principle to a scalar
valued flow potential expressed in terms of an equivalent stress
measure for incompressible orthotropic materials. Similarly, the
derivation of the orthotropic constitutive relations for
transient flow are based on the normality of the stress
difference vector ¢ - R to a scalar valued flow potential
expressed in terms of an eqhivalent stress difference measure.
Evolution equations for the back stress vector R and the )
equivalent drag stress Beq follow from the uniaxial equations.

The total, elastic, viscous and transient strain rate

vectors must obey the following constraint condition:

E=£g, +E, + & (42)
where the strain rates are in engineering notation, for

. . . T :
example, £ = [éxx éyy ézz Yoy Yyz sz] . The superscript T
denotes the transpose of vectors and matrices. For convenience,

the stress difference o-R is denoted by the symbol gqr 1.e.:
94 =9 -R » (43)

The stress vectors are also expressed in engineering notation.

Orthotropic Model of Elasticity.-- The constitutive rzlation

between the elastic strain and the stress is described in rate

form as:

£, =C s (44)

where C is the compliance matrix for a linearly elastic but
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orthotropic material. values of the Young’s moduli, Poisson’s
ratios and shear moduli for orthotropic and transversely
isotropic polycrystalline ice are not readily available. However,
engineering approximations involving a weighted average of the
five elastic constants for single crystals have been developed
({Gammon et al., 1983, Ashton, 1986). The Poisson’s ratio for
isotropic polcrystalline ice is approximately 0.3 (Gold, 1977).

Orthotropic Model of Viscous Flow.-- To derive the

relationship between the viscous strain rate vector g, and the
stress vector o, an equivalent stress measure generalized for
pressure insensitive orthotropic materials, i.e., with identical

behavior in tension and compression, is defined:

3 Ja a a
O 2 .- —1(UXX—U )2 + ~2(o —czz)z + —3(ozz—uxx)2 +
q 8 L3 YY 3 YY 3
‘ 2 2 2
2a4oxy + 2a5ayz + 2a6crzx (45)

with B chosen to be (al+a2) so that °e=°yy when the stress
components are described by the vector ¢ = [0 Uyy 0 0O O]T,

i.e., the y-axis is chosen as the reference direction. Equation
(45) is similar in form to that used by Hill (1950) for metal
plasticity and may be expressed in compact form using matrix

notation as:

ceq = 3/B ¢ G o (46)
where
'al+a3 -—al -a3 ]
3 3 3
al¢a2 = 0

3 3
G = ay+tas (47)

3

2a
SYMMETRIC 4 Za;
- 2a
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The viscous strainrate vector can now be related to the stress
vector by defining a scalar valued viscous flow potential

function:

- N+1
4, = a —4 | (48)
N+1

which obeys the normality principle:

LR
£y = — (49)
g
The parameter a in Eq. (48) is a constant associated with the
power law for uniaxial loading in the y-direction; it is
equivalent to the quantity l/VN in Eg. (3). Combining Egs.
(46)-(49) yields the desired relationship:
= xs” 50
g, = XA S (50)
where
N-1
A= 3/8a eq (51)
and
*
S =G o - (52)

Note that §* is a pseﬁdo—deviatoric stress vector for orthotropic
materials. If aq to ag = 1, S* reduces to the conventional
deviatoric stress vector, Ueq reduces to the conventional
equivalent stress measure for isotropic materials, and Eg. (50)
becomes the well known three-dimensicnal generalization of the
power law for creep of isotropic materials, as presented by
Palmer (1967) for glacier flow.

Using the hypothesis of energy sguivalence, the relationship
between the equivalent stress defined in Eg. (45) and an
equivalent strain rate measure can be established. The rate of

dissipation of energy per unit volums, P, is given by:

T,
P =g £, | {53)
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Application of this hypothesis yields:
T ., .
A2 ‘eq 8v,eq (54)

where €y eq is the equivalent viscous strainrate. The viscous
14
strain rate vector in Eq. (54) can be eliminated using Egs. (50),

(52) and (46) in succession to yield:

Given the equivalent stress measure, Eg. (55) can be used to
compute the equivalent viscous strain rate. Alternatively, an

explicit expression can be derived by first eliminating (oXx -
2 .

7y yoeo.ro_ 2 in Eq. (45) through the use of Eq. (50) and then

substituting the resulting expression for °eq in Eg. (55). The

final expression can be expressed in compact notation as follows:

. . 2 L] T .‘ ) '
8v,eq = B/3 e, H v (56)
where the transformation matrix H is given by:
- 2 -
3(al+a3)a2 —3ala2a3 —3a1a2a3 .
a*2 a*2 , a*2
3(al+a2)a3 —-3ala2a3
0
ax? ax? 5 -
3(a,+a,)a
H = 2 31 (57)
- a* .
2/a4
SYMMETRIC 2/a5
2/a6
with a* = ajagtaza ;+taga,. It is apparent that Eg. (56) can be

reduced to the conventional eguivalent strain rate measure for
isotropic materials if ay to ag = 1. Moreover, when loading is in

the reference direction, £ =

.. £ .., and Eg. (%5) reduces to
v, 29 EED A

Orthotropic Model of Transient Flow.-- The orthotropic

generalization of the transient deformation is based on the

assumption of flow incompressibility. Although this may not be
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strictly true, Sinha (1987) has arqued that transient flow does
not change the volume appreciably and that the assumption is
valid. This assumption is implicitly made for metals (Hart,
1976). A second assumption is that the orthotropy is described by
the same set of parameters, i.e., a, through ag -

The model accounts for isotropic hardening as well as
kinematic or directional hardening, which leads to subsequent
deformation or stress-induced anisotropy (as opposed to material
or texture anisotropy). The relationship between the transient
strain rate £, and the stress vector 94 can be derived from the
normality of 94 to a scalar valued transient flow potential
function. Following the procedure used to derive Egs. (50)-(52)

yields:

, ' N N-1 *

& = 3/8 a/Beq cd,eq §d : {58)
where

S4 =Go3=Go-GR (59)
Beq is the equivalent nondimensional drag stress, and 93 eq2
3/B ng G AR To complete the multiaxial formulation, the .

evolution equations for R and Beq as well as the value of the
eqivalent stress difference measure are reguired.

- For consistency with the incompressiblilty constraint on
transient flow and the elastic nature of back stresses, it is

necessary to define a scalar valued flow potential in terms of

the equivalent back stress, Req2=3/ﬁ BT G R, i.e.,

2
a

¢ = b/2 Re

s (60)

where b equals 1/AE in the reference direction. The transient

strain can then be related to the pseudo-deviatoric back stress

vector by imposing normality:

(61)
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Sg’ =GR (62)

The evolution equation for the back stress vector is the time

derivative of Eg. (61), i.e.,

Sg =GR =8/(3b) g (63)
The equivalent non-dimensional drag stress Beq is given by:

. . det e

Beq = c Et,eq sgn ——;;43 (64)

where c equals H in the reference direction. Both the equivalent
transient strain rate and strain measures in Eg. (64) can be
obtained using the transformation matrix H, derived in Eg. (57)
for the equivélent viscous strain rate.

The equivalent stress difference can be expressed as a

2
* T * d/eq
can be defined in terms of §d as 3/8B L) §d , and substituting

§*—§R* for §d* and o-R for 94 yields:

function of the equivalent transient strain. Noting that o

2 =38 107" -2 T 5"+ TS, " (65)

o4
d,eq — =R

o and, consequently, §* may be considered as given, while §R* may
be computed by integrating Eg. (63). Substitution of Eg. (61) in
the last term of Eq. (65) yields (8/3b) ETEt' where BTEt equals
twice the elastic strain energy stored in the material. Based on
an equivalence in the rate of stored elastic strain energy, it
follows that:

20l
+

BoE = Req ®t,eq (66)
The equivalent uniaxial relationship between R and ¢ is
€q t,eq
given by:
R = 1/b ¢ (67)
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since b=1/AE. Equation (67) and the right-hand-side of Eq. (66)
are integrated simultaneously with respect to time to yield BTEt'
On substitution in Eq. (65), the following result is obtained:

%,eq = 3/B 2'5* - 2/b oTe, + (5¢,0q/P)? (68)
The second term in this equation is obtained by substituting Eq.
(61) in the corresponding term of Egq. (65).

Equations (42), (44), (50), (58)) (63) and (64) are the
orthotropic counterparts of Egs. (1)-(3) and (5)=(7). They form
the governing equations that can be integrated numerically to
predict the model response under variable loading histories

involving multiaxial states of stress.

5. EXPERIMENTAL VALIDATION OF MULTIAXIAL MODEL
Estimation of'Orthotropic Model Parameters.-- The

orthotropic model parameters can be estimated from experimental
data under steady viscous flow conditions. Five uniaxial
(compression) tests are required to obtain the five paramgters a,
through ag since a, can be set to one withcut loss of generality.
In a comprehensive paper reviewing the constants used in Glen’s
power law for polycrystalline glacier ice, Hooke (1981) has
concluded that in the absence of experimental evidence to the
contrary, a value of three for the power law index N is
reasonable, irrespective of the "structural state", e.g., fabric
and grain size. The effect of the structural state is then
accounted for by changing the "viscosity" parameter (V in the
present model). This is the approach adopted here, in which N is
three and the initial texture or material anisotropy is accounted
for through the use of an appropriate equivalent stress measure.
Under uniaxial loading in any specific direction, the viscosity
parameter relating viscous strain rate and stress in the
specified direction is provided by Eg. (55), the definition for
the equivalent stress in Eq. (45), and the definition for the

equivalent viscous strain rate in Eg. (56).
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The x-axis is taken to be normal to the ice sheet which is
defined by the y-z plane. The c-axes of the ice crystals are
assumed to lie in the y-z plane and are aligned in the
y-direction. The tests are conducted in three orthogonal »
directions y, x, and z respectively, and along the three 45° axes
on the y-z, x-y, and z-x planes respectively. Let Bl to 65
represent the experimentally determined ratios of the maximum
stresses (strengths) for the latter five tests, respectively, to
the maximum stress in the reference y-direction for tests
conducted at the same constant strain rate. In the case of creep
tests, the B’'s represent inverse ratios of the corresponding
minimum strain rates raised to the power of 1/N. The parameters
a, to a, may be determined from the following equations (see
Appendix A for derivations):

B0 - B, (1-8,")
8 = -~ n n n (69)
Bln + an (l_Bln)
83 = 7~ —q n n (70)
-n -Nn
a, = B/6 148, - 8,7 "] C(71)
-n -n -
-
a6 = 8/6 [465 - 1] (73)

where n=2N/{(N+1). Typical values for 61 lie between 2-5. While
the values of the constants 52 to 65 are not generally available
in the literature for pure polycrystalline ice, they may be
estimated from the sea ice data referred to in the beginning of
Section 4.

For a transversely isotropic material, i.e., isotropy in the
y-z plane, 62=B3=l and 64=65. As a result, al=a3=l, a,=ag, the
parameters a, and ag are functions of only 61, while a, depends
on both Bl and 64. Only two uniaxial tests are required to obtain
51 and 54: one in the x-direction and one along the 45° axis on

the x-y or z-x planes.
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Model Predictions Under Steady State Plane-Strain and

Triaxial Compressive Loadings.-- Experimental data on the pure

flow (both transient and steady state) of polycrystalline ice
under multiaxial states of stress is unavailable, although the
incompressible and istropic power law of Palmer (1967) is widely
used to describe the deformation of glacier ice under such
stresses. In spite of data limitations, an attempt is made here
to evaluate model predictions under steady flow conditions.
Frederking (19f7) has conducted plane strain uniaxial
compression tests on columnar-grained transversely isotropic
freshwater ice. For his type A tests, strains in the z-direction
are constrained to zero and stresses are applied in the
y-direction. At steady state where the power law orthotropic
formulation suffices, the ratio Tz of the plane strain stress to
the unconfined stress at the same strain rate is directly related

to 8, by the following equation (see Appendix B)

48 2n 1/n
r - [___;___} (14)
451“ -1

The equation predicts Fz to vary between 2.1-5.1 for
experimentally observed values of 61 ranging from 2 to 5, and
N=3. This is consistent with Frederking’s experimental
observations which were close to 2 at high strainrates and to 5
at low strain rates. In his type B tests, strains in the
x-direction are constrained to zero while stresses are again
applied in the y-direction. In this case, the ratio FX is given
by:

Since Bl is generally greater than one, TX will be less than
approximately 1.2 for N=3. For typical —alues of Bl, the
predicted values of TX lies between 1.01 to 1.06. This is
consistent with Frederking’s experiments which showed negligible

influence of x-direction confinement on stresses. Although the
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derivation in Appendix B determines TZ and Fx as the ratios of
two steady state stresses resulting from viscous flow,
considerable damage occurred in Frederking’s tests. The accuracy
of the predictions are interesting nonetheless. This probably
occurs because both the unconfined and partially confined
strengths are reduced by damage, and the resulting effect on
strength ratios is less significant.

According to the orthotropic model, the ratio Tt of the
maximum axial stress with a confining pressure equal to T times
the axial stress to the maximum axial stress in the unconfined
state at the same strain rate should be given by (see Appendix
C):

The shear stress (i.e. axial stress minus radial stress)

normalized by the unconfined stress is independent of T or

confining pressure for the model and equal to one. The triaxial

behavior of pure (non-saline) polycrystalline ice has been

studied by Jones (1978). His tests, which were performed at

6 -3 )
to 5x10

two increase in shear stress due to confining pressure. Nadreau

strain rates of 10~ s-1, indicate up to a factor of
and Michel (1986) have reported triaxial tests on freshwater,
iceberg and saline ice, and their results confirm that shear
strength increases with confining pressure and strain rate. The
pressure and strain rate sensitivity of damage in ice, which
causes the increase in shear strength with confining pressure and
strain rate, is examined in the forthcoming paper by wu and Shyam
Sunder (1988).

5. CONCLUSIONS

This paper presents a multiaxial differential flow law for
polycrystalline ice which attempts to model the underlying
physical deformation mechanisms active in the material.

Instantaneous elasticity is modeled by the classical theory of
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linear elasticity, while the steady viscous deformation-rate
mechanism is described by Glen’s power law. On the other hand,
the transient deformation-rate mechanism is modeled by the
interaction between the soft and hard deformation systems which
gives rise to an internal drag stress and a back stress.
Increasing drag and back stresses are associated with the
phenomena of isotropic and kinematic hardening, respectively.
Dimensional requirements identified by Ashby and Duval (1985) are
satisfied by the model.

The multiaxial generalization follows from conventional
elasticity theory and from the rate theory of flow for the
viscous and transient deformation-rates. The rate theory assumes
normality of the deformation-rate to a scalar valued flow
potential expressed in terms of an equivalent stress measure.
History effects are modeled with a hardening multiaxial
formulation based on the elastic back stress vector aﬁd an
equivalent (scalar) drag stress measure. Equations are derived
for an orthotropic model of incompressible flow and for
estimating the orthotropic parameters from uniaxial test data.

The uniaxial model contains a total of six parameters that
can be determined from conventional experimental testing hethods
for ice. The model is verified against Jacka’s (1984), Sinha’s
(1978), and Brill and Camp’s test data on the creep of
polycrystalline ice. Predictions of the ratio of transient to
total strain agree qualitatively with Sinha’s equation if grain
size effects are taken into account. The mechanical behavior
under monotonically increasing stress is successfully predicted
using Sinha’s (1983) data obtained from constant displacement
rate tests.

For the multiaxial model, experimental verification is made
difficult by the lack of data for the pure flow of freshwater
polycrystalline (S2 or S3) ice. The model predicts pressure-
insensitive behavior under conventional triaxial loading
conditions. Also, theoretical predictions agree well with
Frederking's (1977) data from constant strain rate tests carried

out under plane strain conditions (although it should be noted
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that his data is for ice with distributed cracks or damage

induced by loading, not pure flow.)
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APPENDIX A

Orthotropic Material Parameters (al - a6)

A.1 Definition of Symbols

The derivation here considers only the power law creep of
ice. The parameters a; to ag and Bl to 65 have been defined in
5 to b

the unaxial power law along the y (reference)-, x- and z-

the paper. The coefficients a, b g are the constants for

directions, and along the 45° axes on the y-z, x-y and z-X

planes respectively. Thus,

i _ N
Syy = a Uyy » (A.1)

-

N
e45(zx) = b (A.6)

6 45(zx)

.

where syy"""€45(zx) and ¢ are the viscous

yy"""645(zx)
strain rate and the stress components. Also, we can set the

first orthotropic parameter al=l without loss of generality.

A.2 Uniaxial Tests in the X- and Z- Directions

To derive a, and az, ve first obtain expressions for

the strain rates in the x- and z-directions using Egs. (50 - 52)
and the definition for the eguivalent stress (Eg. 45). Note that
the stress vectors are E=[UXX 0000 0]T and ¢=[0 0 L. 0 0 O]T
for loading in the X- and Z- directions, respectively. Thus:
l+a3(N+1)/2
N
l+a2
‘ (N+1),2
aj+ag
N
€, = 8 ) sz (A.8)
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Equations (A.7) and (A.8) are then compared with Egs. (A.2) and

/N 5h the

(A.3), respectively. Solving for a, with B -(a/b )
first pair of eguations and with 62 (a/b } in the second pair
of equations, we obtain two simultaneous equations involving ay
and ag:

2N/(N+1) 1 (A.9)

az (l"'a3)61

2N/ (N+1)

I

a, (a2+a3)62 -1 (A.10)
Equations (69) and (70) are obtained by solving Egs. (A.9) and
(A.10) for a, and aj in terms of Bl and 82.

A.3 Uniaxial Tests at 45° on Y-2 , X-Y and Z-X Planes
Consider the case of the uniaxial test at 45° on the y~2

plane. The stress applied at 45° to the coordinate axes in the

plane is denoted by 645(yz). The corresponding strain is denoted

by ¢ . By means of a stress transformation, the plane
45(yz) T 7

stress vector [dyy’czz'cyz] =[°45(yz)/2’°45(yz)/2’°45(yz)/2]
After computing the equivalent stress defined in Eqg. (45),

the inplane strains are computed using Egs. (50)-(52):
e =K a./6 ¢ N (A.11)
vy 1 45(yz)
e =K ay/6 o N (A.12)
z2 3 45(yz) ’
: _ N
sz —,_K aS 645(}72) (A.13)
where
3 , a +as - )
K= a (—) N2 gy (N2 1y2) (D) (4 14y
a;+a, 3

The strain rate at 45° to the coordinate axis can be obtained

by a strain transformaticn



845(yz)= 1/4 (

al+a3
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+ 2a.-) K o
5

(A.15)

Comparison of Egs. (A.4) and (A.13) with 1533=(a/b4)1/N yields an

expression for ag, as given by Eg. (72). To obtain parameters a

4

and ag (see Egs. (71) and (73)) , similar 45° tests can be

conducted in the x-y and z-x planes respectively. For a

transversely isotropic material, 62=B3=l and 64=65. The

constants a; to ag can then be simplified to the following:

v

o
(S PV S I
o n n

v wow

1]
(o)

1
n
261 -1
L
n -
28,"/6 (48,

n

- 1)

26,776 (4 - 8,7™)

28,"/6 (4B~

n

- 1)

(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A.21)
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APPENDIX B
Frederking’s Tests

B.1 Type A Test

The coordinate axes are defined in the text. The ice sheet
is subjected to normal stress vy in the y-direction, and its
in-plane movement in the z-direction is restrained. Stresses in

the x-direction are assumed to be zero. Thus:

Oy = 0 (B.1)

€,y = 0 (B.2)

The derivation below assumes that damage is negligible. Using

Eqs. (50)-(52) and (B.2), the following expression is obtained:

o = —0¢ : (B.3)

After computing the equivaleﬁt stress (Eg. (45)), the strain

rate in the y-direction is determined from Egs. (50)-(52):
. I (N+1)/2 c,N
€ = a (1 + (o ) (B.4)
Yy [ ; )] Yy
l+a, a,+a,
where the supgrscript ¢ on Oy implies that it is confined. For
an unconfined test we have from Eq. (A.1):
£ = alzo u)N (B.5)
Yy Yy
where the superscript u on Ty implies that it is unconfined. If
the strain rates are the same, we can equate Egs. (B.4) and

(B.5) to cbtain (with substitutions from Egs. (A.16)-(A.21) for
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transverse isotropy) the expression for TZ given by Eq. (74).

B.2 Type B Test
The load is applied in the y-direction. Stresses in the

s-direction are assumed to be zero. Displacements are constrained

in the x-direction. These imply:

22

XX

The same procedure is followed as in the type A test. The

"equations corresponding to Egs. (B.3)-(B.4) are, respectively:

a1
Ty = ——————cyy {B.8)
al+a3
1 a3
_ (N+1)/2 c,N
syy = af (ay + )] ( vy ) (B.9)
l+a2 l+a3

Comparing Egs. (B.9) and (B.5}, and substituting from Egs.
(A.16)-(A.21), Eg. (75) for rx follows.



LY
ha¥3

41

APPENDIX C

Triaxial Test

In the triaxial test of a transversely isotropic ice sheet
subjected to a normal stress o in the y-direction, the stress
state is described by the vector [o T

T xx %yy “zz “xy Cyz Toxl T
[To ¢ To 0 0 0], where T is the ratio of the confining stress

to the axial stress. The equivalent stress (Eg. (45)) is ¢

e=
(1-t)o. The strain rate in the y-direction is obtained from Egs.

(50)-(52) as follows:

i N tr,N
eyy a(l-1) (Uyy ) (C.1)

where the superscript 'tr’ signifies loading under triaxial
conditions. Combining Egs. (B.5) and (C.1) yields Eg. (76). Also
the shear stress normalized by the unconfined stress 1is
independent of T as shown below:

6. - o (1-1) oYY

V8% zz tr

- =1 S (C.2)
Yy Yy
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